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ABSTRACT

Sensor failure detection, isolation, and accommodation

using a neural network approach is described. An
autoassociative neural network is configured to perform

dimensionality reduction on the sensor measurement
vector and provide estimated sensor values. The sensor
validation scheme is applied in a simulation of the

T700 turboshaft engine in closed loop operation.
Performance is evaluated based on the ability to detect

faults correctly and maintain stable and responsive

engine operation. The set of sensor outputs used for
engine control forms the network input vector.
Analytical redundancy is verified by training networks
of successively smaller bottleneck layer sizes. Training

data generation and strategy are discussed. The engine
maintained stable behavior in the presence of sensor
hard failures. With proper selection of fault
determination thresholds, stability was maintained in

the presence of sensor soft failures.

Variable

Ng

Ng'

Np

P_
Qs
T2
T4_
Wf

NOMENCLATURE

Description
% of gas generator design speed

% of gas generator design speed
indicated in cockpit

% of power turbine design speed
Compressor exit pressure

Shaft torque
Compressor inlet temperature

Interturbine gas temperature
Fuel flow rate

INTRODUCTION

On-line fault detection and diagnosis is an area with
great potential. The ability to detect and isolate a fault

as it happens allows immediate decisions to be made
about system availability and likelihood of mission
completion. In a battlefield environment, for example,

This paper is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

system unavailability may well have more dire
consequences than the loss of some information.
Sensor malfunctions are particularly pernicious in that

they may lead to mission termination when all systems
are in fact functioning properly.

Variables in complex systems are often correlated and
this information can be used to detect, isolate and

recover incorrect sensor readings. Dunia, et al. 1have
categorized sensor faults into four classes: total failure,

drift, 10ss of precision, and fixed bias. An early
technique used to perform detection, isolation, and
recovery was Kalman filtering. 2"3'4The success of this

approach is dependent upon the fidelity of the engine
model embedded in the filter. 5 Another successful

approach uses linear fault models. 6 Additionally, Guo
and Nurre 7have demonstrated how lost or incorrect

sensor values can be recovered using the remaining
valid measurements through a neural network, a

precursor to this work.

The fault detection, isolation, and accommodation

(FDIA) method selected here was to integrate an
autoassociative neural network into the path of
information passed from the sensors back to the

controlling entities. Responses to total failure and drift
faults have been investigated here. Autoassociative
neural networks have the general feature of being able

to perform functional mappings. Kramer 8 and Saund 9
have introduced and applied a specific network
architecture that is effective for filtering and fault

isolation. Among the principal advantages of this
approach over competing methods is that identification,
isolation, and accommodation can be done with a single

passage of information through the network.

T700 SYSTEM OPERATION

The T700 is a turboshaft engine. It is used in the

Blackhawk and Apache helicopter airframes. The
principal input from the cockpit is the percent of
collective stick. Engine operation is controlled by the

1
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QUANTITY

% power turbine speed ( Np ) '

Compressor inlet temperature ( I"2 )

% gas generator speed ( N s )

% gas generator speed ( Ng' )

Shaft torque ( Qs )

Turbine inlet temperature ( T,5 )

Compressor exit pressure ( Pe )

Trim signal

RECEIVING UNIT /
PRINCIPAL PURPOSE

TYPE

ECU / Trim Proximity

HMU / Fuel schedule Thermo-mechanical (bellows)

HMU / Fuel schedule Mechanical (fly weights)

Cockpit / Display Inductive

ECU / Load sharing Proximity

T/CECU / Overtemperature
protection
HMU / Fuel schedule

HMU / Np governing

Pneumo-mechanical (bellows)

Table 1. Sensors involved in control for the T700 engine.

T2

T_

dcmaad

5em_l ef
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Figure 1. Schematic of the T700 closed loop system
shown with and without sensor validation. Sensor

validation is inserted in the feedback path to pass
sensed values and estimates of faulted sensed values.
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Figure 2. Response of a simulated T700 closed loop
system hating no sensor validation scheme to a hard
fault in sensed compressor exit pressure (P,3) to 50
psia at 0.25 seconds.

Electrical Control Unit (ECU) and Hydromechanical
Unit (HMU). The principal ECU control functions are

to guard against power turbine overspeed and
overtemperamre as well as to maintain the power

turbine at 100% of design speed by sending a trim
signal to the HMU. A schematic of the closed loop
system is shown in Figure 1. Detailed descriptions of
the system operation are given by Duyar, et al., '°
Curt'an and Levine, _1and Prescott and Morris) 2 The

sensors which form the engine control system inputs
are listed in Table 1.

Examples of the potentially catastrophic response of

traditional controllers to sensor faults can be readily
simulated. The simulated response of a T700 engine
without FDIA to a sudden loss of sensed compressor

exit pressure (Ps3) is shown in Figure 2 in the form of

histories of critical engine parameters. The immediate
effect of a loss in sensed compressor exit pressure is a

loss in fue] flow (wf) from the hydromechanical unit
(HMU). Scnsed P_ drives a lever mechanism in the
HMU. The mechanism has the function of creating the

appropriatt,, fuel flow past a metering valve by
multiplying scheduled (w(P,3) by sensed P,3- An
abnormally low P_3reduces the flow area in the

metering valve. As the rate of enthalpy release to the
turbines chops, the speeds of both power turbine and
gas generator spools decrease. This leads to a decrease

in the actud P,3- The decrease in gas generator speed is
sensed by he HMU. Shortly after the fault, it switches

from scheclulmg fuel on a u_n schedule to an
acceleration schedule in response to the decreasing
speed. Because the sensed P,3 does not rise as it would

in normal engine operation, the fuel metering valve

2
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Figure 3. Schematic representation of the
autoassociative neural network architecture applied
to sensor validation. Nodes in the demapping layers

are typically nonlinear. Output nodes are typically
linear. Bottleneck layer nodes may be either linear
or nonlinear.

output is reduced to the engine minimum flow rate and

power turbine speed drops below 40% of design speed.
The corresponding shaft torque, which keeps the

helicopter aloft, drops to near zero.

NEURAL NETWORK

The autoassociative neural networks described by

Kramer s and Saund 9 have three hidden layers. The fast

demaps the input data. The second layer, known as the
bottleneck layer reduces the number of values passed to
the system intrinsic degrees of freedom. The third layer

maps this information to an output vector in the same
space as the input vector. A schematic of the network
architecture is shown in Figure 3. These networks have

the property of mapping the input vector onto the
nearest point on the functional surface generated by
training. Errant elements of input vectors, then, become

mapped to a vector with a smaller error. By using
nonlinear processing elements in the mapping and
demapping layers, nonlinear functionality can be

captured during training. The bottleneck layer may be
either linear or nonlinear. The output layer is typically
linear.

Selection of bottleneck layer size
A critical value in applying the dimensionality

reduction approach to a particular problem is the
number of nodes in the bottleneck layer. If the number
of nodes is greater than the system degrees of freedom,

errant sensor information may be unnecessarily passed
through the bottleneck layer. If the number is smaller
than the degrees of freedom, the network outputs

cannot adequately reconstruct the system behavior due
to insufficient information having been passed through

uJ

¢e

g
cO

10

1

0.1

0.01

Five nodes'-

100 1000 10000

Epoch

Figure 4. Error histories during training for
different bottleneck layer sizes. The constancy for
the three-noded case indicates loss of information

through the network while the smaller error and
steady decline in the four-noded case indicates a
match between the system degrees of freedom and
the bottleneck size.

the bottleneck layer. One approach to finding the

number of system degrees of freedom would be to use
the equations governing the system to fred the
functional relations among them. Another is to examine

and compare the performance of various network
architectures. This can be particularly useful if (as is the

case with the TT00 engine system) more than one
function is used to characterize these relationships

depending upon the location within the operating
envelope.

Networks having different numbers of bottleneck nodes
were trained on the same data set for the same number

of epochs. It is anticipated that, below a certain number
of bottleneck nodes, the sum of squared errors will

have a distinctly larger minimum on account of the loss
of critical information passing through the bottleneck.

A comparison of the sums of squared errors as a
function of epoch number is shown in Figure 4. Several

trainings of each network architecture were performed
using random initial guesses for nodal weights and
biases in order to avoid training to a local error
minimum. Based on these results, the appropriate
bottleneck size was determined to be four nodes.

Although the five-noded case had smaller error after
the selected number of epochs, the error trend suggests
the four-noded case could have been trained further to

achieve the same error. Additionally, because of the

similarity in the results among the four- and five-noded
cases and the marked difference from the three noded

case, it appears likely that the four-noded case passes
the minimum amount of information for construction of

an input vector estimate.

3
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Training AL_proach
The selected network is both nonlinear and

multilayered. As such, it will likely have local minima

in its error surface. To ensure convergence to a global
minimum, large momentum was included. Nyguen-
Widrow 'a initial guesses for weights and biases and

variable learning rate were also included to speed up
convergence. Training data were generated from runs

of a closed loop component-based real time nonlinear
simulation.'4 Engine inlet temperature and torque

demands ranged from -40 ° to 74 ° F and 116 to 410 ft-

Ib, respectively. This covers most of the engine
operating envelope. The data were normalized by their

nominal full scale values. Target vectors of normalized
sensed steady state engine outputs were selected to

resolve the operating envelope trmely enough that the
incremental change in each parameter was smaller than
the fault threshold planned for it. Each training vector

contained the sensed values of the parameters listed in
Table 1.

Training was performed in two steps. First, preliminary
weights and biases were generated by training on a data

set of 88 unSaulted engine output vectors for
approximately 12,000 epochs. These weights and biases
were used as initial guesses for a second training round
in which vectors containing both faulted and unfaulted

values were presented as input. In this set of 704
vectors, 88% contained a fault in one sensed value.

With the exception of No, these faults were randomly
biased by 10 to 100% of the uafaulted values. Because

Np is to remain nearly constant over the entire T700
operating envelope, the random perturbations in it
ranged up to 10%. The second training required

approximately 25,000 epochs. At the termination of
training, the root-mean-squared error between input and

output vector elements was approximately 4%.

Intearation into T700 Simulator

The test bed was adapted from the simulation used to
generate training data. '4 Subroutines for fault injection

were inserted at points where sensed values were
calculated. Up to three faults of preset type can be
injected at scheduled times. The vector of sensed

values enters the network at each time step, every 0.006
seconds. If any estimated value differs from the

corresponding input value by more than a preset
threshold, the estimate rather than the sensed value is

passed to the controller. For all subsequent time steps,

the network takes as input the estimated values for any
faulted sensors from the previous time step. Thus a
sensor, once determined to be faulted, is removed from
future calculations. A schematic of the fault creation

and checking function integrated into the flow of

information among the program modules representing
the engine, HMU, and ECU is shown in Figure 5.

Ceckp/t

% _ :k N.

i

T, ;
. t

D
..... ;

Flow Nm

_A

][NG[_ _ Qs, NO

EOIJ
Trim -J_

Figure 5. Schematic display of the flow of
information among the T700 engine, electrical

control unit, and hydromechanical unit. S, F, and C
represent the sensor, fault injection, and fault

checking and substitution, respectively.

SIMULATION RESULTS

Network matching of engine dynamic response
The network training results were based upon steady
state engine behavior. In order to test the network's
ability to predict engine dynamic behavior, the network

output based upon sensed values was compared with
simulated engine quantities during and after a sudden
change in load demand. The results are shown in Figure
6 in which the collective stick is ramped from 50 to 53

percent between 5 and 5.1 seconds. The discrepancy
prior to 5 seconds is the result of modeling error in the

network training. Most traces agree to approximately
the same level following the stick movement. The
principal exceptions are power turbine speed and

compressor inlet temperature. The network was trained
on constan_ power turbine speed. As such, the weights

and biases pass a nearly constant power turbine speed
estimate over a wide range of input values.
Temperatu:e data included a wide range, but

informatio_l about the typical constancy of temperature
was not pa_ of the training data.

The respor_se of an unfanlted engine to a change in
demand is to begin hunting for a new equilibrium point

at which _e engine is kept in trim. To accomplish this,
the trim si_ hal goes through a fluctuation large enough

to cause th ."power turbine speed to overshoot. The
decaying o scillations are centered about the steady state
values for -he new demand. Also, several other
parameters fluctuate at the fuel control hunting

frequency. These fluctuations are not all in phase with
each other, however. No information on phase relations
is included in the training data set. The network, by

training on steady state trim values, apparently does not

4
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Figure 6. Response of a healthy simulated T700

closed loop system and the trained network to a
sudden change in load demand. The collective stick
was ramped from 50 to 53% from 5.0 to 5.1

seconds. Some sensor lags are small enough to
make sensed values indistinguishable from actual
values.

include an essential feature of the dynamic character of

the ECU. The network estimate maintains the phase of

the trim signal oscillation. The amplitude of oscillation,
however, is much smaller. This will be shown later to

have important consequences when the trim signal is
determined to be faulted.

Effect of threshold level

Thresholds were initially selected to be on the order of

twice the modeling error. The thresholds selected have
a large bearing on the accuracy of the fault detected. If

• a fault level is selected too narrowly for a given

parameter, the result can be a misdiagnosis,
unnecessary removal of valid information from the
control loop, and degradation of the FDIA capability.

Similarly, if a fault level is selected too large for a
given parameter, the result can be a misdiagnosis in

another parameter. Two cases were run to illustrate
both the latter behavior and proper behavior.

When the fault injected is a ramp type, the gradual
movement of the sensed value away from the actual
value may lead to gradual changes in engine condition

and in the corresponding correctly-sensed values.
There are some combinations of fault thresholds for

which the logic algorithm would correctly recognize
the existence of a fault but incorrectly identify the

sensor in which it was occurring. An example is shown
in Figure 7. In this case, a ramp fault was injected to

power turbine speed. The power turbine threshold was
set to 10%. The ECU interprets the fault as an

E

z_

0.181.-, /"- '

o
0'14 L_d_-- _ -- ACTUAL

• 0 5 10 __
110j _- I
105l _ t _ I

,oo ......................I
904 5 10 15

=_ ° 100"111 ...... :" :"'/..... t
0. _ 100.0 .... "°"

z _ 99.91 I
0 5 10 15

-_" 230 /
220 I--, ..... _........................ /
21o_ ........ ..--y-- ]
2°°119o_ /10 15

51.0 .... _ I

I
E o._ " _-=
_ 5 10 15

Time (sec)

Figure 7. Response of the TT00 system including
sensor validation to a ramp fault in percent power

turbine speed of 3%/second. Tolerance thresholds
were 10% in power turbine speed and 0.1 volts in

trim signal. The fault is initiated at 0.25 seconds. A
spurious fault is detected in trim signal at 0.89
seconds. A correct fault is detected in power turbine

speed at 5.52 seconds. Some sensor lags are small
enough to make sensed values indistinguishable
from actual values. Following substitution,
estimated and sensed trim signal values coincide.

overspeed and reacts by changing the trim signal sent to
the HMU. Fuel flow is correspondingly reduced and the

actual power turbine speed decreases. The first fault
detected is at 0.89 seconds in the trim signal. This is a

spurious fault. The switching to the estimated trim
value leads to a brief cessation of the power turbine

deceleration. As the power turbine sensed speed
continues to deviate further from the design point, the

logic algorithm correctly detects the fault at 5.52
seconds and replaces the sensed value with the
estimate. The value of power turbine speed passed to
the ECU is now within fractions of a percent of the

design speed. This substitution leads to a sudden shift
in the estimated trim signal passed by the network to

the HMU. Fuel flow is correspondingly increased and

the power turbine accelerates. From 5.52 to 7.51
seconds, the sensed power turbine speed gradually
declines from a value above the m_m reference speed to
a value below it. At 7.51 seconds, the ECU detects

enough of an underspeed to act to retrim the engine.
Again, the HMU continues to be passed the estimated
trim signal. The result is increased acceleration of the

power turbine. As the turbine accelerates, the estimated
turbine speed rises above the trim reference speed and
then remains constant. Although the ECU perceives an

overspeed, no further corrective action is taken because
the error is within the designed trim deadband.

5
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Figure 8. Response of the T700 system including
sensor validation to a ramp fault in percent power

turbine speed of 3%/second. Tolerance thresholds
were 1% in power turbine speed and 0.1 volts in
trim signal. The fault is initiated at 0.25 seconds. A

correct fault is detected in power turbine speed at
0.61 seconds. Some sensor lags are small enough to

make sensed values indistinguishable from actual
values.

A second case was run with a smaller fault tolerance

(1%) for percent power turbine speed. A single correct
power turbine speed fault was detected at 0.61 seconds.
These results are shown ill Figure 8. When the

estimated power turbine speed value is substituted for
the sensed value, a small underspeed is detected. The

ECU retrims the engine based on this and successive
estimated values. At steady state, the actual and
estimated power turbine speeds differ by 0.4 %. This

bias exists because the estimated and design power
turbine speeds agree closely enough that the ECU
concludes the engine is in trim.

Engine response to demand changes in presence of a
sensor fault
Once a sensor fault has been detected and

accommodated, the engine will likely be expected to

appropriately respond to subsequent changes in load
demand. This was examined for two fault cases: the

first in the trim signal and the second in compressor
exit pressure.

A negative ramp fault was injected for the trim signal
case. These results are shown in Figure 9. Prior to fault

detection, the HMU interprets this signal as a demand
to increase fuel flow to compensate for a power turbine

underspeed. As a result, the power turbine actually

A

o.2ol •
.. _ AC,UA,
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-- 0.18 _/ U -- SENSED
;_ 0.17

0 5 10 15

1°21 _

_" 101[ / \
-- 100_- _ ............. _ ....................................
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0.2

_- -0. 5 10 15

225,

215_/(L
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Figure 9. Response of the T700 system including

sensor validation to a ramp fault in trim signal of
-0.1 volts/second followed by a change in load
demand. The trim signal tolerance threshold was
0.1 volts. The fault is initiated at 0.25 seconds. A

correct fault is detected in trim signal at 1.82
seconds. The collective stick was ramped from 50 to

53% from 5.0 to 5.1 seconds. Some sensor lags are
small enough to make sensed values

indistinguishable from actual values. Following
substitution, estimated and actual trim signal
values coincide.

accelerates. When the fault is detected in the trim

signal, the substituted value is larger and constant. The
result is that the power turbine equilibrates to a steady

overspeed Value. At 5 seconds, the torque load on the
output shaft is increased. The power turbine decelerates
to below the design speed. For the power turbine to

return to _m, the dynamic character of the trim signal
is very iml:ortant. As mentioned earlier, the dynanfic
character of the trim signal during load demand

changes is aot captured by the steady state network
training. The estimated trim signal does not increase
enough to bring the engine back to trim. While a steady

state is reached, the power delivered does not increase.

A hard fau t in compressor exit pressure at 0.25 seconds
is examine! in the second case. The results are shown

in Figure 13. The fault is immediately detected. The

substituted pressure is larger than the actual value. This
has an immediate effect of increasing fuel flow and
power turbine speed shortly thereafter. The ECU then

acts to bring the engine back to trim. Due to the
positive bias between actual compressor pressure and

estimated compressor pressure, however, the system
goes into a limit cycling mode as the HMU
overschedi les fuel flow and the ECU acts in correction.

6
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Figure 10. Response of the T700 system including
sensor validation to a hard fault in sensed

compressor exit pressure (P,3) to 50 psia at 0.25

seconds followed by a change in load demand. A
correct fault is detected in P,3 at 0.252 seconds. The
collective stick was ramped from 50 to 53% from

5.0 to 5.1 seconds. Some sensor lags are small
enough to make sensed values indistinguishable
from actual values.

It should be noted here that the second case is identical

to the one described to demonstrate the system response

to a sensor fault without validation (Figure 2). The
sensor validation scheme applied here was effective at
maintaining stable engine behavior where the

consequences would otherwise likely have been
catastrophic.

When load demand is increased in the presence of a

compressor exit pressure sensor fault, the result with
sensor validation (Figure 10) is closer to healthy engine
behavior (Figure 6) than is the trim signal sensor fault

case (Figure 9). The power turbine briefly tmderspeeds
and the system parameters oscillate as the ECU hunts

for a new equilibrium. The principal feature
distinguishing the post acceleration behavior in this
case from the healthy engine is that the engine limit

cycles whereas in the healthy case the oscillations
decayed. The mean power delivered in the two cases,
however, agree to within fractions of a percent.

Multiple faults
Multiple sensor faults are potentially more difficult to
accommodate in that, with each successive fault, the
amount of information available comes closer to the

system's minimum number of degrees of freedom. The

test case selected included two faulty sensors:
compressor exit pressure and power turbine speed. The

Time (see)

Figure 11. Response of the T700 system including
sensor validation to a hard fault in sensed

compressor exit pressure (P,3) to 50 psia at 0.25

seconds followed by a hard fault in sensed power

turbine speed (Np) at 5.0 seconds. A correct fault is
detected in P,3 at 0.252 seconds. Some sensor lags

are small enough to make sensed values
indistinguishable from actual values.

signal from the former is used by the HMU while that

of the latter is used by the ECU. The results are shown
in Figure 11. Similar to previous cases, compressor
exit pressure undergoes a hard fault at 0.25 seconds.

The limit cycling response is as before. At 5.0 seconds,
a hard power turbine speed sensor fault of 50% of
actual speed is injected. It is immediately detected.

Substitution with estimated speed distinctly reduces the
oscillations in system parameters because the speed
error inferred by the ECU is small and comparatively
steady. The estimated power turbine speed is below the

design speed. The ECU acts to accelerate the power
turbine until the estimated value agrees with the design

value. At steady state, the power turbine has in fact
oversped by 0.8 %.

Other fault combinations have yet to be tested. It is

expected that combinations which include the trirn
signal will be problematic due to the inability of the

present FDIA to recreate the necessary dynamic trim
signal behavior.

CONCLUDING REMARKS
An autoassociative neural network has been created

that maps normal T700 engine behavior to within
tolerance thresholds over a wide range of torque
demands and engine inlet conditions. This network has

been integrated into a component-based real-time
simulation and is effective at detecting sensor faults and
substituting appropriate estimated sensor values given

7
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anappropriate selection of fault thresholds. Among the
issues yet to be addressed is the selection of tolerances
to adequately identify faults from each sensor over a

variety of flight conditions. Generally, the integration
of a neural network-based sensor validation scheme

into the dosed loop engine operation resulted in stable

engine behavior in response to faults. Hard sensor
faults in any one of the sensed quantities were correctly

detected and accommodated. System response in
ramped cases depended upon the comparative sizes of
fault detection thresholds. Unaccommodated, these

sensor faults would have been catastrophic to the
engine and airframe. The behavior around the time of

variable substitution of the system with the integrated
neural network is as expected m terms of engine and

controller response. While the network embedded in
the control has been shown to accommodate multiple

sensor faults, this is not necessarily true of all multiple
fault combinations.

Future work might involve network training to include
engine dynamic response and discrimination between
sensor and system faults. Swategies for threshold
selection might also be investigated, with respect to

both minimization of misdiagnoses and engine-to-
engine variation.
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